ISSN 1600-5368

2-[(4-Ethylphenyl)iminomethyl]-3,5dimethoxyphenol

Zarife Sibel Şahin,^a Ferda Erşahin,^b Ayşen Alaman Ağar^b and Şamil Işık^a*

^aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, Kurupelit, TR-55139 Samsun, Turkey, and ^bDepartment of Chemistry, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey Correspondence e-mail: sgul@omu.edu.tr

Received 19 January 2009; accepted 10 February 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.040; *wR* factor = 0.077; data-to-parameter ratio = 9.6.

The title compound, $C_{17}H_{19}NO_3$, adopts the phenol-imine tautomeric form, with a resonance-assisted $O-H\cdots N$ intramolecular hydrogen bond $[O \cdots N = 2.551 (3) \text{ Å}]$. The dihedral angle between the two benzene rings is 45.42 (7)°. The two methoxy groups are coplanar with the attached benzene ring [C-O-C-C torsion angles = -1.1 (5) and 3.2 (4)°].

Related literature

For the photochromic and thermochromic characteristics of Schiff base compounds, see: Hadjoudis *et al.* (1987); Lozier *et al.* (1975). For the notation of hydrogen-bonding motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data C₁₇H₁₉NO₃

 $M_r = 285.33$

Z = 4

Mo $K\alpha$ radiation

 $0.46 \times 0.35 \times 0.11 \text{ mm}$

10094 measured reflections

1831 independent reflections

1036 reflections with $I > 2\sigma(I)$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.049$

Orthorhombic, $P2_12_12_1$ a = 7.5026 (5) Å b = 9.4540 (8) Å c = 21.4408 (13) Å V = 1520.79 (19) Å³

Data collection

Stoe IPDS II diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.991, T_{max} = 0.998$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 191 parameters $wR(F^2) = 0.077$ H-atom parameters constrainedS = 0.92 $\Delta \rho_{max} = 0.09$ e Å⁻³1831 reflections $\Delta \rho_{min} = -0.11$ e Å⁻³

Table 1	
Hydrogen-bond geometry (Å,	°)

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O3−H3···N1	0.82	1.82	2.551 (3)	149

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2762).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). *Tetrahedron*, **43**, 1345–1360.

Lozier, R., Bogomolni, R. A. & Stoekenius, W. (1975). *Biophys. J.* **15**, 955–962. Sheldrick, G. M. (2008). *Acta Cryst.* A**64**, 112–122.

Stoe & Cie (2002). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2009). E65, o547 [doi:10.1107/S1600536809004784]

2-[(4-Ethylphenyl)iminomethyl]-3,5-dimethoxyphenol

Z. S. Sahin, F. Ersahin, A. A. Agar and S. Isik

Comment

Most Schiff base compounds have antibacterial, anticancer, anti-inflammatory and antioxic properties. In addition Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activites (Lozier *et al.*, 1975). There are two types of intramolecular hydrogen bonds in Schiff bases which may stabilize them in keto–amine (N—H—O hydrogen bond) tautomeric forms (Hadjoudis *et al.*, 1987). Our investigations show that the title compound adopts the phenol–imine tautomeric form (Fig. 1).

The N1—C7 bond length of 1.281 (3) Å is typical of a double bond. The dihedral angle between the C1–C6 and C8–C13 benzene rings is 45.4 (2)°. The C4—C7—N1—C8 torsion angle is -179.5 (3)°. The strong intramolecular O3—H3····N1 hydrogen bond forms an S(6) motif (Bernstein *et al.*, 1995).

Experimental

2-Hydroxy-4,6-dimethoxybenzaldehyde (0.0327 g, 0.18 mmol) in ethanol (20 ml) was added to a solution of 4-ethylaniline (0.0219 g, 0.18 mmol) in ethanol (20 ml) and the reaction mixture was stirred for 1 h under reflux, to obtain the title compound. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (yield 61%; m.p.351–353 K).

Refinement

All H atoms were placed in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, O—H = 0.82 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ and $1.5U_{eq}(C_{methyl},O)$. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Figures

Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.

2-[(4-Ethylphenyl)iminomethyl]-3,5-dimethoxyphenol

Crystal data

C ₁₇ H ₁₉ NO ₃	$F_{000} = 608$
$M_r = 285.33$	$D_{\rm x} = 1.246 {\rm ~Mg~m}^{-3}$

Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 7.5026 (5) Å b = 9.4540 (8) Å c = 21.4408 (13) Å V = 1520.79 (19) Å³ Z = 4

Data collection

Cell parameters from 10094 reflections
$\theta = 1.9-27.7^{\circ}$
$\mu = 0.09 \text{ mm}^{-1}$
T = 296 K
Prism, yellow
$0.46 \times 0.35 \times 0.11 \text{ mm}$

Mo Kα radiation

 $\lambda = 0.71073$ Å

Stoe IPDS II diffractometer	1831 independent reflections
Radiation source: fine-focus sealed tube	1036 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.049$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.5^{\circ}$
T = 296 K	$\theta_{\min} = 1.9^{\circ}$
ω scans	$h = -9 \rightarrow 8$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$k = -11 \rightarrow 10$
$T_{\min} = 0.991, T_{\max} = 0.998$	$l = -26 \rightarrow 26$
10094 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.077$	$w = 1/[\sigma^2(F_o^2) + (0.0332P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.92	$(\Delta/\sigma)_{\rm max} = 0.001$
1831 reflections	$\Delta \rho_{max} = 0.09 \text{ e } \text{\AA}^{-3}$
191 parameters	$\Delta \rho_{\rm min} = -0.11 \ e \ \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.2906 (4)	0.3417 (3)	0.70797 (12)	0.0630 (8)
C2	0.2290 (5)	0.3445 (3)	0.76807 (12)	0.0692 (9)
H2	0.1988	0.4295	0.7871	0.083*
C3	0.2128 (4)	0.2174 (3)	0.79972 (12)	0.0635 (8)
C4	0.2526 (4)	0.0871 (3)	0.77182 (11)	0.0566 (7)
C5	0.3141 (4)	0.0911 (3)	0.70914 (12)	0.0610 (8)
C6	0.3354 (4)	0.2165 (3)	0.67808 (12)	0.0630 (8)
H6	0.3794	0.2178	0.6375	0.076*
C7	0.2409 (4)	-0.0436 (3)	0.80628 (12)	0.0601 (7)
H7	0.2663	-0.1284	0.7862	0.072*
C8	0.1874 (4)	-0.1759 (3)	0.89708 (11)	0.0559 (7)
C9	0.2513 (4)	-0.1775 (3)	0.95769 (12)	0.0679 (8)
Н9	0.2991	-0.0956	0.9749	0.081*
C10	0.2447 (5)	-0.3000 (3)	0.99269 (12)	0.0699 (8)
H10	0.2930	-0.3004	1.0326	0.084*
C11	0.1679 (4)	-0.4216 (3)	0.96967 (12)	0.0625 (8)
C12	0.1013 (4)	-0.4181 (3)	0.90983 (12)	0.0634 (8)
H12	0.0481	-0.4988	0.8934	0.076*
C13	0.1118 (4)	-0.2971 (3)	0.87352 (11)	0.0604 (8)
H13	0.0675	-0.2980	0.8330	0.072*
C14	0.2705 (5)	0.5932 (3)	0.69842 (14)	0.0878 (10)
H14A	0.2939	0.6663	0.6685	0.132*
H14B	0.3412	0.6091	0.7350	0.132*
H14C	0.1464	0.5944	0.7094	0.132*
C15	0.4190 (5)	-0.0439 (4)	0.62229 (12)	0.0884 (11)
H15A	0.4361	-0.1407	0.6102	0.133*
H15B	0.5311	0.0049	0.6212	0.133*
H15C	0.3372	0.0007	0.5940	0.133*
C16	0.1567 (5)	-0.5544 (3)	1.00901 (14)	0.0857 (10)
H16A	0.1075	-0.5299	1.0494	0.103*
H16B	0.0747	-0.6198	0.9892	0.103*
C17	0.3298 (6)	-0.6273 (4)	1.01865 (17)	0.1268 (16)
H17A	0.3789	-0.6538	0.9790	0.190*
H17B	0.3116	-0.7105	1.0435	0.190*
H17C	0.4108	-0.5648	1.0397	0.190*
N1	0.1964 (3)	-0.0451 (2)	0.86397 (10)	0.0629 (7)
01	0.3148 (3)	0.4591 (2)	0.67216 (8)	0.0834 (7)
02	0.3479 (3)	-0.0388 (2)	0.68417 (8)	0.0781 (6)
03	0.1587 (4)	0.2229 (2)	0.85970 (8)	0.0879 (7)
H3	0.1526	0.1425	0.8738	0.132*
4		82		
Atomic disple	acement parameters (A	[⁻)	- 12	- 13
	U^{11}	U^{22} U^{33}	U^{12}	U^{ij}

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

 U^{23}

supplementary materials

C1	0.063 (2)	0.060 (2)	0.0665 (18)	-0.0127 (18)	-0.0040 (17)	0.0093 (15)
C2	0.082 (2)	0.0589 (19)	0.0672 (18)	-0.0111 (18)	0.0035 (17)	-0.0034 (15)
C3	0.070(2)	0.0659 (18)	0.0548 (15)	-0.0106 (19)	0.0023 (15)	-0.0011 (15)
C4	0.0569 (19)	0.0566 (18)	0.0563 (15)	-0.0072 (17)	-0.0013 (14)	0.0015 (14)
C5	0.059 (2)	0.0607 (19)	0.0630 (17)	0.0015 (17)	-0.0005 (14)	-0.0030 (15)
C6	0.062 (2)	0.0680 (19)	0.0586 (15)	-0.0035 (19)	0.0001 (14)	0.0062 (16)
C7	0.0531 (18)	0.0607 (18)	0.0665 (17)	0.0020 (17)	0.0004 (15)	0.0003 (14)
C8	0.0524 (19)	0.062 (2)	0.0534 (15)	0.0002 (17)	0.0044 (14)	0.0009 (14)
C9	0.074 (2)	0.067 (2)	0.0621 (16)	-0.0129 (18)	-0.0080 (16)	-0.0051 (15)
C10	0.075 (2)	0.078 (2)	0.0569 (15)	-0.0050 (19)	-0.0071 (15)	0.0078 (16)
C11	0.061 (2)	0.062 (2)	0.0642 (17)	0.0031 (18)	0.0066 (14)	0.0035 (15)
C12	0.067 (2)	0.0563 (19)	0.0664 (18)	-0.0047 (17)	0.0065 (16)	-0.0045 (15)
C13	0.059 (2)	0.068 (2)	0.0541 (15)	-0.0018 (17)	0.0005 (14)	-0.0004 (16)
C14	0.104 (3)	0.062 (2)	0.097 (2)	-0.006 (2)	-0.009 (2)	0.0148 (18)
C15	0.110 (3)	0.092 (2)	0.0636 (18)	0.001 (2)	0.0264 (18)	-0.0078 (17)
C16	0.100 (3)	0.076 (2)	0.081 (2)	0.003 (2)	0.0076 (19)	0.0194 (18)
C17	0.125 (4)	0.119 (3)	0.137 (3)	0.047 (3)	0.038 (3)	0.058 (3)
N1	0.0689 (18)	0.0643 (15)	0.0554 (14)	-0.0059 (15)	0.0017 (12)	0.0050 (11)
O1	0.1059 (19)	0.0655 (13)	0.0788 (14)	-0.0060 (14)	0.0029 (12)	0.0146 (12)
O2	0.0968 (17)	0.0701 (14)	0.0674 (12)	0.0057 (13)	0.0197 (12)	0.0004 (11)
O3	0.136 (2)	0.0651 (13)	0.0621 (11)	-0.0094 (16)	0.0212 (12)	-0.0037 (9)

Geometric parameters (Å, °)

C1—01	1.362 (3)	C11—C12	1.377 (3)
C1—C2	1.369 (3)	C11—C16	1.515 (4)
C1—C6	1.387 (4)	C12—C13	1.386 (4)
C2—C3	1.385 (4)	C12—H12	0.93
С2—Н2	0.93	С13—Н13	0.93
C3—O3	1.350 (3)	C14—O1	1.426 (3)
C3—C4	1.401 (3)	C14—H14A	0.96
C4—C5	1.421 (3)	C14—H14B	0.96
C4—C7	1.442 (3)	C14—H14C	0.96
C5—O2	1.364 (3)	C15—O2	1.430 (3)
C5—C6	1.370 (4)	C15—H15A	0.96
С6—Н6	0.93	C15—H15B	0.96
C7—N1	1.281 (3)	C15—H15C	0.96
С7—Н7	0.93	C16—C17	1.485 (5)
C8—C13	1.375 (4)	C16—H16A	0.97
C8—C9	1.385 (3)	C16—H16B	0.97
C8—N1	1.428 (3)	С17—Н17А	0.96
C9—C10	1.381 (4)	С17—Н17В	0.96
С9—Н9	0.93	С17—Н17С	0.96
C10—C11	1.377 (4)	О3—Н3	0.82
C10—H10	0.93		
O1—C1—C2	124.0 (3)	C11—C12—H12	119.2
O1—C1—C6	113.7 (2)	C13—C12—H12	119.2
C2—C1—C6	122.2 (3)	C8—C13—C12	120.3 (2)
C1—C2—C3	118.3 (3)	C8—C13—H13	119.8

C1—C2—H2	120.9	C12—C13—H13	119.8
С3—С2—Н2	120.9	O1—C14—H14A	109.5
O3—C3—C2	117.4 (3)	O1-C14-H14B	109.5
O3—C3—C4	120.3 (3)	H14A—C14—H14B	109.5
C2—C3—C4	122.3 (2)	O1-C14-H14C	109.5
C3—C4—C5	116.7 (3)	H14A—C14—H14C	109.5
C3—C4—C7	121.4 (2)	H14B—C14—H14C	109.5
C5—C4—C7	121.8 (3)	O2-C15-H15A	109.5
O2—C5—C6	124.5 (2)	O2-C15-H15B	109.5
O2—C5—C4	114.1 (2)	H15A—C15—H15B	109.5
C6—C5—C4	121.4 (3)	O2—C15—H15C	109.5
C5—C6—C1	119.0 (3)	H15A—C15—H15C	109.5
С5—С6—Н6	120.5	H15B—C15—H15C	109.5
С1—С6—Н6	120.5	C17—C16—C11	114.4 (3)
N1—C7—C4	121.3 (3)	С17—С16—Н16А	108.7
N1—C7—H7	119.3	C11—C16—H16A	108.7
С4—С7—Н7	119.3	C17—C16—H16B	108.7
C13—C8—C9	118.6 (3)	C11—C16—H16B	108.7
C13—C8—N1	124.0 (2)	H16A—C16—H16B	107.6
C9—C8—N1	117.3 (3)	С16—С17—Н17А	109.5
C10—C9—C8	120.4 (3)	С16—С17—Н17В	109.5
С10—С9—Н9	119.8	H17A—C17—H17B	109.5
С8—С9—Н9	119.8	С16—С17—Н17С	109.5
C11—C10—C9	121.4 (3)	H17A—C17—H17C	109.5
C11—C10—H10	119.3	H17B—C17—H17C	109.5
С9—С10—Н10	119.3	C7—N1—C8	120.1 (2)
C10-C11-C12	117.8 (3)	C1—O1—C14	118.1 (2)
C10-C11-C16	121.0 (3)	C5—O2—C15	117.6 (2)
C12—C11—C16	121.2 (3)	С3—О3—Н3	109.5
C11—C12—C13	121.5 (3)		
O1—C1—C2—C3	-179.1 (3)	N1—C8—C9—C10	179.2 (3)
C6—C1—C2—C3	0.5 (5)	C8—C9—C10—C11	-2.9 (5)
C1—C2—C3—O3	177.4 (3)	C9—C10—C11—C12	1.5 (5)
C1—C2—C3—C4	-1.8 (5)	C9-C10-C11-C16	-178.3 (3)
O3—C3—C4—C5	-178.1 (3)	C10-C11-C12-C13	0.4 (4)
C2—C3—C4—C5	1.1 (4)	C16-C11-C12-C13	-179.7 (3)
O3—C3—C4—C7	-1.4 (4)	C9—C8—C13—C12	-0.4 (4)
C2—C3—C4—C7	177.8 (3)	N1—C8—C13—C12	-177.1 (3)
C3—C4—C5—O2	-179.0 (3)	C11—C12—C13—C8	-1.0 (4)
C7—C4—C5—O2	4.3 (4)	C10-C11-C16-C17	-71.9 (4)
C3—C4—C5—C6	0.8 (4)	C12-C11-C16-C17	108.2 (4)
C7—C4—C5—C6	-175.8 (3)	C4—C7—N1—C8	-179.5 (3)
O2—C5—C6—C1	177.8 (3)	C13—C8—N1—C7	-43.7 (4)
C4—C5—C6—C1	-2.1 (4)	C9—C8—N1—C7	139.6 (3)
O1—C1—C6—C5	-179.0 (3)	C2—C1—O1—C14	-1.1 (5)
C2-C1-C6-C5	1.4 (5)	C6—C1—O1—C14	179.3 (3)
C3—C4—C7—N1	-1.1 (4)	C6—C5—O2—C15	3.2 (4)
C5—C4—C7—N1	175.4 (3)	C4—C5—O2—C15	-176.9 (3)
C13—C8—C9—C10	2.3 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O3—H3…N1	0.82	1.82	2.551 (3)	149

Fig. 1